MakeItFrom.com
Menu (ESC)

ASTM Grade LC1 Steel vs. Grade 7 Titanium

ASTM grade LC1 steel belongs to the iron alloys classification, while grade 7 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC1 steel and the bottom bar is grade 7 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
150
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
24
Fatigue Strength, MPa 200
250
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40
34
Shear Modulus, GPa 73
38
Tensile Strength: Ultimate (UTS), MPa 540
420
Tensile Strength: Yield (Proof), MPa 270
340

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 410
320
Melting Completion (Liquidus), °C 1470
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 50
22
Thermal Expansion, µm/m-K 13
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
7.2

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.5
47
Embodied Energy, MJ/kg 20
800
Embodied Water, L/kg 47
470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
95
Resilience: Unit (Modulus of Resilience), kJ/m3 200
560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19
26
Strength to Weight: Bending, points 19
28
Thermal Diffusivity, mm2/s 13
8.9
Thermal Shock Resistance, points 16
31

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.6 to 99.05
0 to 0.3
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.12 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
98.7 to 99.88
Residuals, % 0
0 to 0.4