MakeItFrom.com
Menu (ESC)

ASTM Grade LC1 Steel vs. Grade CX2MW Nickel

ASTM grade LC1 steel belongs to the iron alloys classification, while grade CX2MW nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC1 steel and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 27
34
Fatigue Strength, MPa 200
260
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
84
Tensile Strength: Ultimate (UTS), MPa 540
620
Tensile Strength: Yield (Proof), MPa 270
350

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 410
980
Melting Completion (Liquidus), °C 1470
1550
Melting Onset (Solidus), °C 1420
1490
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 50
10
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
65
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.5
12
Embodied Energy, MJ/kg 20
170
Embodied Water, L/kg 47
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 200
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 13
2.7
Thermal Shock Resistance, points 16
17

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.020
Chromium (Cr), % 0
20 to 22.5
Iron (Fe), % 97.6 to 99.05
2.0 to 6.0
Manganese (Mn), % 0.5 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.45 to 0.65
12.5 to 14.5
Nickel (Ni), % 0
51.3 to 63
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.8
Sulfur (S), % 0 to 0.045
0 to 0.025
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35