MakeItFrom.com
Menu (ESC)

ASTM Grade LC2-1 Steel vs. EN 1.4901 Stainless Steel

Both ASTM grade LC2-1 steel and EN 1.4901 stainless steel are iron alloys. Both are furnished in the normalized and tempered condition. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC2-1 steel and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
19
Fatigue Strength, MPa 430
310
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 810
740
Tensile Strength: Yield (Proof), MPa 630
490

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 450
650
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
26
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
11
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.9
2.8
Embodied Energy, MJ/kg 25
40
Embodied Water, L/kg 60
89

Common Calculations

PREN (Pitting Resistance) 3.1
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1040
620
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
26
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 12
6.9
Thermal Shock Resistance, points 24
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.22
0.070 to 0.13
Chromium (Cr), % 1.4 to 1.9
8.5 to 9.5
Iron (Fe), % 92.5 to 95.3
85.8 to 89.1
Manganese (Mn), % 0.55 to 0.75
0.3 to 0.6
Molybdenum (Mo), % 0.3 to 0.6
0.3 to 0.6
Nickel (Ni), % 2.5 to 3.5
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010