MakeItFrom.com
Menu (ESC)

ASTM Grade LC2-1 Steel vs. EN AC-42000 Aluminum

ASTM grade LC2-1 steel belongs to the iron alloys classification, while EN AC-42000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade LC2-1 steel and the bottom bar is EN AC-42000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
59 to 91
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 20
1.1 to 2.4
Fatigue Strength, MPa 430
67 to 76
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 810
170 to 270
Tensile Strength: Yield (Proof), MPa 630
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 260
500
Maximum Temperature: Mechanical, °C 450
170
Melting Completion (Liquidus), °C 1460
610
Melting Onset (Solidus), °C 1420
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 46
160
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
130

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 1.9
8.0
Embodied Energy, MJ/kg 25
150
Embodied Water, L/kg 60
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
2.8 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1040
64 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 29
18 to 28
Strength to Weight: Bending, points 25
26 to 35
Thermal Diffusivity, mm2/s 12
66
Thermal Shock Resistance, points 24
7.9 to 12

Alloy Composition

Aluminum (Al), % 0
89.9 to 93.3
Carbon (C), % 0 to 0.22
0
Chromium (Cr), % 1.4 to 1.9
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 92.5 to 95.3
0 to 0.55
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.65
Manganese (Mn), % 0.55 to 0.75
0 to 0.35
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 2.5 to 3.5
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.045
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15