MakeItFrom.com
Menu (ESC)

ASTM Grade LC2-1 Steel vs. Grade 4 Titanium

ASTM grade LC2-1 steel belongs to the iron alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC2-1 steel and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
17
Fatigue Strength, MPa 430
340
Poisson's Ratio 0.29
0.32
Reduction in Area, % 34
28
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 810
640
Tensile Strength: Yield (Proof), MPa 630
530

Thermal Properties

Latent Heat of Fusion, J/g 260
420
Maximum Temperature: Mechanical, °C 450
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 46
19
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.9
31
Embodied Energy, MJ/kg 25
500
Embodied Water, L/kg 60
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1040
1330
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 29
40
Strength to Weight: Bending, points 25
37
Thermal Diffusivity, mm2/s 12
7.6
Thermal Shock Resistance, points 24
46

Alloy Composition

Carbon (C), % 0 to 0.22
0 to 0.080
Chromium (Cr), % 1.4 to 1.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 92.5 to 95.3
0 to 0.5
Manganese (Mn), % 0.55 to 0.75
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 2.5 to 3.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
98.6 to 100
Residuals, % 0
0 to 0.4