MakeItFrom.com
Menu (ESC)

ASTM Grade LC2-1 Steel vs. SAE-AISI 50B46 Steel

Both ASTM grade LC2-1 steel and SAE-AISI 50B46 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC2-1 steel and the bottom bar is SAE-AISI 50B46 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
21
Fatigue Strength, MPa 430
220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 810
540
Tensile Strength: Yield (Proof), MPa 630
310

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 450
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
47
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.4
Embodied Energy, MJ/kg 25
19
Embodied Water, L/kg 60
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
99
Resilience: Unit (Modulus of Resilience), kJ/m3 1040
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
19
Strength to Weight: Bending, points 25
19
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 24
16

Alloy Composition

Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0 to 0.22
0.44 to 0.49
Chromium (Cr), % 1.4 to 1.9
0.2 to 0.35
Iron (Fe), % 92.5 to 95.3
97.7 to 98.5
Manganese (Mn), % 0.55 to 0.75
0.75 to 1.0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 2.5 to 3.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.045
0 to 0.040