MakeItFrom.com
Menu (ESC)

ASTM Grade LC2-1 Steel vs. C14520 Copper

ASTM grade LC2-1 steel belongs to the iron alloys classification, while C14520 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC2-1 steel and the bottom bar is C14520 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
9.0 to 9.6
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 810
290 to 330
Tensile Strength: Yield (Proof), MPa 630
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 450
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 46
320
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
85
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
85

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
33
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.9
2.6
Embodied Energy, MJ/kg 25
42
Embodied Water, L/kg 60
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 1040
240 to 280
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 29
9.0 to 10
Strength to Weight: Bending, points 25
11 to 12
Thermal Diffusivity, mm2/s 12
94
Thermal Shock Resistance, points 24
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.22
0
Chromium (Cr), % 1.4 to 1.9
0
Copper (Cu), % 0
99.2 to 99.596
Iron (Fe), % 92.5 to 95.3
0
Manganese (Mn), % 0.55 to 0.75
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 2.5 to 3.5
0
Phosphorus (P), % 0 to 0.040
0.0040 to 0.020
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.045
0
Tellurium (Te), % 0
0.4 to 0.7