MakeItFrom.com
Menu (ESC)

ASTM Grade LC2-1 Steel vs. C31400 Bronze

ASTM grade LC2-1 steel belongs to the iron alloys classification, while C31400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC2-1 steel and the bottom bar is C31400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
6.8 to 29
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 810
270 to 420
Tensile Strength: Yield (Proof), MPa 630
78 to 310

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 450
180
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 46
180
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
42
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
43

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
29
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.9
2.6
Embodied Energy, MJ/kg 25
42
Embodied Water, L/kg 60
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
26 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 1040
28 to 420
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 29
8.7 to 13
Strength to Weight: Bending, points 25
11 to 14
Thermal Diffusivity, mm2/s 12
54
Thermal Shock Resistance, points 24
9.6 to 15

Alloy Composition

Carbon (C), % 0 to 0.22
0
Chromium (Cr), % 1.4 to 1.9
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 92.5 to 95.3
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Manganese (Mn), % 0.55 to 0.75
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 2.5 to 3.5
0 to 0.7
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.045
0
Zinc (Zn), % 0
5.8 to 11.2
Residuals, % 0
0 to 0.4