MakeItFrom.com
Menu (ESC)

ASTM Grade LC2-1 Steel vs. C90200 Bronze

ASTM grade LC2-1 steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC2-1 steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
70
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 810
260
Tensile Strength: Yield (Proof), MPa 630
110

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 450
180
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 46
62
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
34
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.9
3.3
Embodied Energy, MJ/kg 25
53
Embodied Water, L/kg 60
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
63
Resilience: Unit (Modulus of Resilience), kJ/m3 1040
55
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 29
8.3
Strength to Weight: Bending, points 25
10
Thermal Diffusivity, mm2/s 12
19
Thermal Shock Resistance, points 24
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.22
0
Chromium (Cr), % 1.4 to 1.9
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 92.5 to 95.3
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.55 to 0.75
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 2.5 to 3.5
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.045
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6