MakeItFrom.com
Menu (ESC)

ASTM Grade LC2 Steel vs. EN 1.3960 Stainless Steel

Both ASTM grade LC2 steel and EN 1.3960 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC2 steel and the bottom bar is EN 1.3960 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
34
Fatigue Strength, MPa 230
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Tensile Strength: Ultimate (UTS), MPa 570
590
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 410
970
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
15
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
21
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.6
4.1
Embodied Energy, MJ/kg 22
57
Embodied Water, L/kg 50
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
170
Resilience: Unit (Modulus of Resilience), kJ/m3 260
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 14
3.9
Thermal Shock Resistance, points 17
17

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.030
Chromium (Cr), % 0
16.5 to 18.5
Iron (Fe), % 95.3 to 97.5
60.2 to 67.9
Manganese (Mn), % 0.5 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 2.0 to 3.0
13 to 15
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.020