MakeItFrom.com
Menu (ESC)

ASTM Grade LC3 Steel vs. ASTM A369 Grade FP91

Both ASTM grade LC3 steel and ASTM A369 grade FP91 are iron alloys. Both are furnished in the normalized and tempered condition. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC3 steel and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
19
Fatigue Strength, MPa 230
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 570
670
Tensile Strength: Yield (Proof), MPa 310
460

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
600
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.6
Embodied Energy, MJ/kg 23
37
Embodied Water, L/kg 52
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
560
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 14
6.9
Thermal Shock Resistance, points 17
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.15
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Iron (Fe), % 94.4 to 96.5
87.3 to 90.3
Manganese (Mn), % 0.5 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 3.0 to 4.0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.6
0.2 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.025
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010