MakeItFrom.com
Menu (ESC)

ASTM Grade LC3 Steel vs. EN 1.4521 Stainless Steel

Both ASTM grade LC3 steel and EN 1.4521 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC3 steel and the bottom bar is EN 1.4521 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
23
Fatigue Strength, MPa 230
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Tensile Strength: Ultimate (UTS), MPa 570
520
Tensile Strength: Yield (Proof), MPa 310
340

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 410
930
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
23
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 23
39
Embodied Water, L/kg 52
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 260
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 14
6.2
Thermal Shock Resistance, points 17
18

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.025
Chromium (Cr), % 0
17 to 20
Iron (Fe), % 94.4 to 96.5
74.6 to 81.1
Manganese (Mn), % 0.5 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 3.0 to 4.0
0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.8