MakeItFrom.com
Menu (ESC)

ASTM Grade LC4 Steel vs. EN 1.8918 Steel

Both ASTM grade LC4 steel and EN 1.8918 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC4 steel and the bottom bar is EN 1.8918 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
19
Fatigue Strength, MPa 230
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 570
640
Tensile Strength: Yield (Proof), MPa 310
490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.6
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.7
Embodied Energy, MJ/kg 24
24
Embodied Water, L/kg 54
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.15
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 93.4 to 95.5
95.2 to 98.9
Manganese (Mn), % 0.5 to 0.8
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 4.0 to 5.0
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.6
Sulfur (S), % 0 to 0.045
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2