MakeItFrom.com
Menu (ESC)

ASTM Grade LC4 Steel vs. C70700 Copper-nickel

ASTM grade LC4 steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC4 steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
73
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 27
39
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 570
320
Tensile Strength: Yield (Proof), MPa 310
110

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 410
220
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 49
59
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 4.6
34
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.8
3.4
Embodied Energy, MJ/kg 24
52
Embodied Water, L/kg 54
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 260
51
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
10
Strength to Weight: Bending, points 19
12
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 17
12

Alloy Composition

Carbon (C), % 0 to 0.15
0
Copper (Cu), % 0
88.5 to 90.5
Iron (Fe), % 93.4 to 95.5
0 to 0.050
Manganese (Mn), % 0.5 to 0.8
0 to 0.5
Nickel (Ni), % 4.0 to 5.0
9.5 to 10.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.045
0
Residuals, % 0
0 to 0.5