MakeItFrom.com
Menu (ESC)

ASTM Grade LC9 Steel vs. ASTM B817 Type I

ASTM grade LC9 steel belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC9 steel and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22
4.0 to 13
Fatigue Strength, MPa 420
360 to 520
Poisson's Ratio 0.29
0.32
Reduction in Area, % 34
5.0 to 29
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 660
770 to 960
Tensile Strength: Yield (Proof), MPa 590
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 430
340
Melting Completion (Liquidus), °C 1450
1600
Melting Onset (Solidus), °C 1410
1550
Specific Heat Capacity, J/kg-K 470
560
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 2.3
38
Embodied Energy, MJ/kg 31
610
Embodied Water, L/kg 65
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 920
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23
48 to 60
Strength to Weight: Bending, points 21
42 to 49
Thermal Shock Resistance, points 20
54 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.13
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.5
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 87.4 to 91.5
0 to 0.4
Manganese (Mn), % 0 to 0.9
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 8.5 to 10
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.45
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0 to 0.030
3.5 to 4.5
Residuals, % 0
0 to 0.4