MakeItFrom.com
Menu (ESC)

ASTM Grade LC9 Steel vs. EN 1.4913 Stainless Steel

Both ASTM grade LC9 steel and EN 1.4913 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC9 steel and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
14 to 22
Fatigue Strength, MPa 420
320 to 480
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 660
870 to 980
Tensile Strength: Yield (Proof), MPa 590
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 430
700
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.3
2.9
Embodied Energy, MJ/kg 31
41
Embodied Water, L/kg 65
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 920
600 to 1860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
31 to 35
Strength to Weight: Bending, points 21
26 to 28
Thermal Shock Resistance, points 20
31 to 34

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0 to 0.13
0.17 to 0.23
Chromium (Cr), % 0 to 0.5
10 to 11.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 87.4 to 91.5
84.5 to 88.3
Manganese (Mn), % 0 to 0.9
0.4 to 0.9
Molybdenum (Mo), % 0 to 0.2
0.5 to 0.8
Nickel (Ni), % 8.5 to 10
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.45
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.015
Vanadium (V), % 0 to 0.030
0.1 to 0.3