MakeItFrom.com
Menu (ESC)

ASTM Grade LC9 Steel vs. Grade 34 Titanium

ASTM grade LC9 steel belongs to the iron alloys classification, while grade 34 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC9 steel and the bottom bar is grade 34 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
20
Fatigue Strength, MPa 420
310
Poisson's Ratio 0.29
0.32
Reduction in Area, % 34
34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 660
510
Tensile Strength: Yield (Proof), MPa 590
450

Thermal Properties

Latent Heat of Fusion, J/g 260
420
Maximum Temperature: Mechanical, °C 430
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
55
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 2.3
33
Embodied Energy, MJ/kg 31
530
Embodied Water, L/kg 65
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
100
Resilience: Unit (Modulus of Resilience), kJ/m3 920
960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23
31
Strength to Weight: Bending, points 21
31
Thermal Shock Resistance, points 20
39

Alloy Composition

Carbon (C), % 0 to 0.13
0 to 0.080
Chromium (Cr), % 0 to 0.5
0.1 to 0.2
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 87.4 to 91.5
0 to 0.3
Manganese (Mn), % 0 to 0.9
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 8.5 to 10
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 0.45
0
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
98 to 99.52
Vanadium (V), % 0 to 0.030
0
Residuals, % 0
0 to 0.4