MakeItFrom.com
Menu (ESC)

ASTM Grade LC9 Steel vs. S15500 Stainless Steel

Both ASTM grade LC9 steel and S15500 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC9 steel and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
290 to 430
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
6.8 to 16
Fatigue Strength, MPa 420
350 to 650
Poisson's Ratio 0.29
0.28
Reduction in Area, % 34
17 to 40
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 660
890 to 1490
Tensile Strength: Yield (Proof), MPa 590
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 430
820
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 31
39
Embodied Water, L/kg 65
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 920
890 to 4460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
32 to 53
Strength to Weight: Bending, points 21
26 to 37
Thermal Shock Resistance, points 20
30 to 50

Alloy Composition

Carbon (C), % 0 to 0.13
0 to 0.070
Chromium (Cr), % 0 to 0.5
14 to 15.5
Copper (Cu), % 0 to 0.3
2.5 to 4.5
Iron (Fe), % 87.4 to 91.5
71.9 to 79.9
Manganese (Mn), % 0 to 0.9
0 to 1.0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 8.5 to 10
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030
Vanadium (V), % 0 to 0.030
0