MakeItFrom.com
Menu (ESC)

ASTM Grade LCA Steel vs. EN 1.4516 Stainless Steel

Both ASTM grade LCA steel and EN 1.4516 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCA steel and the bottom bar is EN 1.4516 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
23
Fatigue Strength, MPa 170
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 500
550
Tensile Strength: Yield (Proof), MPa 230
320

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
720
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
30
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.0
Embodied Energy, MJ/kg 19
28
Embodied Water, L/kg 46
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 14
8.1
Thermal Shock Resistance, points 16
20

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.080
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.9 to 100
83.3 to 89
Manganese (Mn), % 0 to 0.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 0.7
Sulfur (S), % 0 to 0.045
0 to 0.015
Titanium (Ti), % 0
0.050 to 0.35
Residuals, % 0 to 1.0
0