MakeItFrom.com
Menu (ESC)

ASTM Grade LCA Steel vs. EN 1.4876 Stainless Steel

Both ASTM grade LCA steel and EN 1.4876 stainless steel are iron alloys. They have 45% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCA steel and the bottom bar is EN 1.4876 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
33
Fatigue Strength, MPa 170
150
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 500
570
Tensile Strength: Yield (Proof), MPa 230
190

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1410
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
12
Thermal Expansion, µm/m-K 12
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
5.3
Embodied Energy, MJ/kg 19
76
Embodied Water, L/kg 46
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 150
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.25
0 to 0.12
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.9 to 100
38.6 to 50.7
Manganese (Mn), % 0 to 0.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Residuals, % 0 to 1.0
0