MakeItFrom.com
Menu (ESC)

ASTM Grade LCA Steel vs. SAE-AISI D3 Steel

Both ASTM grade LCA steel and SAE-AISI D3 steel are iron alloys. They have 85% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCA steel and the bottom bar is SAE-AISI D3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
9.8 to 15
Fatigue Strength, MPa 170
310 to 940
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
74
Tensile Strength: Ultimate (UTS), MPa 500
770 to 2050
Tensile Strength: Yield (Proof), MPa 230
480 to 1550

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
31
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
8.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
3.2
Embodied Energy, MJ/kg 19
48
Embodied Water, L/kg 46
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
97 to 180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
28 to 74
Strength to Weight: Bending, points 18
24 to 47
Thermal Diffusivity, mm2/s 14
8.3
Thermal Shock Resistance, points 16
23 to 63

Alloy Composition

Carbon (C), % 0 to 0.25
2.0 to 2.4
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 96.9 to 100
80.3 to 87
Manganese (Mn), % 0 to 0.7
0 to 0.6
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.6
Sulfur (S), % 0 to 0.045
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 0
0 to 1.0
Residuals, % 0 to 1.0
0