MakeItFrom.com
Menu (ESC)

ASTM Grade LCA Steel vs. C85900 Brass

ASTM grade LCA steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCA steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 27
30
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 500
460
Tensile Strength: Yield (Proof), MPa 230
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
830
Melting Onset (Solidus), °C 1410
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 49
89
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
28

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 19
49
Embodied Water, L/kg 46
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
16
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 14
29
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.25
0
Copper (Cu), % 0 to 0.3
58 to 62
Iron (Fe), % 96.9 to 100
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 0.7
0 to 0.010
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 0.6
0 to 0.25
Sulfur (S), % 0 to 0.045
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7