MakeItFrom.com
Menu (ESC)

ASTM Grade LCA Steel vs. S43037 Stainless Steel

Both ASTM grade LCA steel and S43037 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCA steel and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
25
Fatigue Strength, MPa 170
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 500
410
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
880
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
25
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.3
Embodied Energy, MJ/kg 19
32
Embodied Water, L/kg 46
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
88
Resilience: Unit (Modulus of Resilience), kJ/m3 150
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.030
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.9 to 100
77.9 to 83.9
Manganese (Mn), % 0 to 0.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0
Residuals, % 0 to 1.0
0