MakeItFrom.com
Menu (ESC)

ASTM Grade LCA Steel vs. S64512 Stainless Steel

Both ASTM grade LCA steel and S64512 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCA steel and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
17
Fatigue Strength, MPa 170
540
Poisson's Ratio 0.29
0.28
Reduction in Area, % 40
34
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 500
1140
Tensile Strength: Yield (Proof), MPa 230
890

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
750
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
28
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
10
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 19
47
Embodied Water, L/kg 46
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 150
2020
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
40
Strength to Weight: Bending, points 18
31
Thermal Diffusivity, mm2/s 14
7.5
Thermal Shock Resistance, points 16
42

Alloy Composition

Carbon (C), % 0 to 0.25
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.9 to 100
80.6 to 84.7
Manganese (Mn), % 0 to 0.7
0.5 to 0.9
Molybdenum (Mo), % 0 to 0.2
1.5 to 2.0
Nickel (Ni), % 0
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.045
0 to 0.025
Vanadium (V), % 0
0.25 to 0.4
Residuals, % 0 to 1.0
0