MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. 7129 Aluminum

ASTM grade LCB steel belongs to the iron alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 27
9.0 to 9.1
Fatigue Strength, MPa 200
150 to 190
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 540
430
Tensile Strength: Yield (Proof), MPa 270
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1410
510
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 51
150
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
120

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 1.4
8.3
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 45
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1050 to 1090
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 19
41
Strength to Weight: Bending, points 19
43 to 44
Thermal Diffusivity, mm2/s 14
58
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 0
91 to 94
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 97 to 100
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0 to 1.0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15