MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. ASTM A182 Grade F92

Both ASTM grade LCB steel and ASTM A182 grade F92 are iron alloys. Both are furnished in the normalized and tempered condition. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
22
Fatigue Strength, MPa 200
360
Poisson's Ratio 0.29
0.28
Reduction in Area, % 40
51
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 540
690
Tensile Strength: Yield (Proof), MPa 270
500

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
590
Melting Completion (Liquidus), °C 1450
1490
Melting Onset (Solidus), °C 1410
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
26
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
10

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
40
Embodied Water, L/kg 45
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 200
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 14
6.9
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.3
0.070 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Iron (Fe), % 97 to 100
85.8 to 89.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 1.0
0