MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. EN 1.4035 Stainless Steel

Both ASTM grade LCB steel and EN 1.4035 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is EN 1.4035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
18
Fatigue Strength, MPa 200
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 540
690
Tensile Strength: Yield (Proof), MPa 270
400

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
760
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
29
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.0
Embodied Energy, MJ/kg 18
27
Embodied Water, L/kg 45
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
420
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 14
7.8
Thermal Shock Resistance, points 17
25

Alloy Composition

Carbon (C), % 0 to 0.3
0.43 to 0.5
Chromium (Cr), % 0
12.5 to 14
Iron (Fe), % 97 to 100
82.1 to 86.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0.15 to 0.35
Residuals, % 0 to 1.0
0