MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. EN 2.4851 Nickel

ASTM grade LCB steel belongs to the iron alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
34
Fatigue Strength, MPa 200
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 540
650
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
1200
Melting Completion (Liquidus), °C 1450
1360
Melting Onset (Solidus), °C 1410
1310
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
11
Thermal Expansion, µm/m-K 12
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
49
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.4
8.1
Embodied Energy, MJ/kg 18
120
Embodied Water, L/kg 45
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
170
Resilience: Unit (Modulus of Resilience), kJ/m3 200
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 14
2.9
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0
1.0 to 1.7
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0 to 0.3
0.030 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 97 to 100
7.7 to 18
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0
58 to 63
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.015
Titanium (Ti), % 0
0 to 0.5
Residuals, % 0 to 1.0
0