MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. Grade 27 Titanium

ASTM grade LCB steel belongs to the iron alloys classification, while grade 27 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is grade 27 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
27
Fatigue Strength, MPa 200
170
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40
34
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 540
270
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 51
21
Thermal Expansion, µm/m-K 12
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
33
Embodied Energy, MJ/kg 18
530
Embodied Water, L/kg 45
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
70
Resilience: Unit (Modulus of Resilience), kJ/m3 200
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 14
8.8
Thermal Shock Resistance, points 17
21

Alloy Composition

Carbon (C), % 0 to 0.3
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97 to 100
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
99 to 99.92
Residuals, % 0
0 to 0.4