MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. Grade 6 Titanium

ASTM grade LCB steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 27
11
Fatigue Strength, MPa 200
290
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40
27
Shear Modulus, GPa 72
39
Tensile Strength: Ultimate (UTS), MPa 540
890
Tensile Strength: Yield (Proof), MPa 270
840

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
310
Melting Completion (Liquidus), °C 1450
1580
Melting Onset (Solidus), °C 1410
1530
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 51
7.8
Thermal Expansion, µm/m-K 12
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
30
Embodied Energy, MJ/kg 18
480
Embodied Water, L/kg 45
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
92
Resilience: Unit (Modulus of Resilience), kJ/m3 200
3390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19
55
Strength to Weight: Bending, points 19
46
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 17
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.3
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97 to 100
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.045
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4