MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. SAE-AISI 1055 Steel

Both ASTM grade LCB steel and SAE-AISI 1055 steel are iron alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
11 to 14
Fatigue Strength, MPa 200
260 to 390
Poisson's Ratio 0.29
0.29
Reduction in Area, % 40
34 to 45
Shear Modulus, GPa 72
72
Tensile Strength: Ultimate (UTS), MPa 540
730 to 750
Tensile Strength: Yield (Proof), MPa 270
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
18
Embodied Water, L/kg 45
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 200
440 to 1070
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
26
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 17
23 to 24

Alloy Composition

Carbon (C), % 0 to 0.3
0.5 to 0.6
Iron (Fe), % 97 to 100
98.4 to 98.9
Manganese (Mn), % 0 to 1.0
0.6 to 0.9
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.045
0 to 0.050
Residuals, % 0 to 1.0
0