MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. C61800 Bronze

ASTM grade LCB steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
26
Fatigue Strength, MPa 200
190
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
44
Tensile Strength: Ultimate (UTS), MPa 540
740
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 51
64
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
3.1
Embodied Energy, MJ/kg 18
52
Embodied Water, L/kg 45
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 200
420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 14
18
Thermal Shock Resistance, points 17
26

Alloy Composition

Aluminum (Al), % 0
8.5 to 11
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 0
86.9 to 91
Iron (Fe), % 97 to 100
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.045
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5