MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. C94400 Bronze

ASTM grade LCB steel belongs to the iron alloys classification, while C94400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is C94400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 27
18
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 72
37
Tensile Strength: Ultimate (UTS), MPa 540
220
Tensile Strength: Yield (Proof), MPa 270
110

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
150
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1410
790
Specific Heat Capacity, J/kg-K 470
350
Thermal Conductivity, W/m-K 51
52
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
32
Density, g/cm3 7.8
9.1
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 18
54
Embodied Water, L/kg 45
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
33
Resilience: Unit (Modulus of Resilience), kJ/m3 200
60
Stiffness to Weight: Axial, points 13
6.1
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 19
6.8
Strength to Weight: Bending, points 19
9.0
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 17
8.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 0
76.1 to 84
Iron (Fe), % 97 to 100
0 to 0.15
Lead (Pb), % 0
9.0 to 12
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.6
0 to 0.0050
Sulfur (S), % 0 to 0.045
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0 to 1.0
0