MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. ACI-ASTM CB6 Steel

Both ASTM grade LCC steel and ACI-ASTM CB6 steel are iron alloys. They have 79% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
18
Fatigue Strength, MPa 230
410
Poisson's Ratio 0.29
0.28
Reduction in Area, % 40
40
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 570
880
Tensile Strength: Yield (Proof), MPa 310
660

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
870
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
17
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
12
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.5
Embodied Energy, MJ/kg 18
36
Embodied Water, L/kg 45
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 13
4.6
Thermal Shock Resistance, points 17
31

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Iron (Fe), % 96.9 to 100
74.4 to 81
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 5.5
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030
Residuals, % 0 to 1.0
0