MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. EN 1.4438 Stainless Steel

Both ASTM grade LCC steel and EN 1.4438 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is EN 1.4438 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
41
Fatigue Strength, MPa 230
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
79
Tensile Strength: Ultimate (UTS), MPa 570
620
Tensile Strength: Yield (Proof), MPa 310
250

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
22
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
4.4
Embodied Energy, MJ/kg 18
60
Embodied Water, L/kg 45
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
200
Resilience: Unit (Modulus of Resilience), kJ/m3 260
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 13
3.7
Thermal Shock Resistance, points 17
14

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.030
Chromium (Cr), % 0
17.5 to 19.5
Iron (Fe), % 96.9 to 100
57.3 to 66.5
Manganese (Mn), % 0 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
13 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.015
Residuals, % 0 to 1.0
0