MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. EN 1.6773 Steel

Both ASTM grade LCC steel and EN 1.6773 steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is EN 1.6773 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
340
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
11
Fatigue Strength, MPa 230
560
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 570
1120
Tensile Strength: Yield (Proof), MPa 310
910

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
450
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
5.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.9
Embodied Energy, MJ/kg 18
26
Embodied Water, L/kg 45
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
2210
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
40
Strength to Weight: Bending, points 20
30
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 17
33

Alloy Composition

Carbon (C), % 0 to 0.25
0.32 to 0.39
Chromium (Cr), % 0
1.6 to 2.0
Iron (Fe), % 96.9 to 100
92 to 93.9
Manganese (Mn), % 0 to 1.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 0
3.6 to 4.1
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.045
0 to 0.025
Residuals, % 0 to 1.0
0