MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. CC383H Copper-nickel

ASTM grade LCC steel belongs to the iron alloys classification, while CC383H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is CC383H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
130
Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 25
20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
52
Tensile Strength: Ultimate (UTS), MPa 570
490
Tensile Strength: Yield (Proof), MPa 310
260

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
260
Melting Completion (Liquidus), °C 1450
1180
Melting Onset (Solidus), °C 1410
1130
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 49
29
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
5.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
44
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
5.7
Embodied Energy, MJ/kg 18
83
Embodied Water, L/kg 45
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
84
Resilience: Unit (Modulus of Resilience), kJ/m3 260
250
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.010
Boron (B), % 0
0 to 0.010
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0 to 0.25
0 to 0.030
Copper (Cu), % 0
64 to 69.1
Iron (Fe), % 96.9 to 100
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.2
0.6 to 1.2
Nickel (Ni), % 0
29 to 31
Niobium (Nb), % 0
0.5 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Selenium (Se), % 0
0 to 0.010
Silicon (Si), % 0 to 0.6
0.3 to 0.7
Sulfur (S), % 0 to 0.045
0 to 0.010
Tellurium (Te), % 0
0 to 0.010
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 1.0
0