MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. Titanium 4-4-2

ASTM grade LCC steel belongs to the iron alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
10
Fatigue Strength, MPa 230
590 to 620
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40
20
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 570
1150 to 1250
Tensile Strength: Yield (Proof), MPa 310
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
310
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 49
6.7
Thermal Expansion, µm/m-K 13
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
39
Density, g/cm3 7.8
4.7
Embodied Carbon, kg CO2/kg material 1.4
30
Embodied Energy, MJ/kg 18
480
Embodied Water, L/kg 45
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
4700 to 5160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
34
Strength to Weight: Axial, points 20
68 to 74
Strength to Weight: Bending, points 20
52 to 55
Thermal Diffusivity, mm2/s 13
2.6
Thermal Shock Resistance, points 17
86 to 93

Alloy Composition

Aluminum (Al), % 0
3.0 to 5.0
Carbon (C), % 0 to 0.25
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.9 to 100
0 to 0.2
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 0
3.0 to 5.0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0.3 to 0.7
Sulfur (S), % 0 to 0.045
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
85.8 to 92.2
Residuals, % 0
0 to 0.4