MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. C61000 Bronze

ASTM grade LCC steel belongs to the iron alloys classification, while C61000 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
29 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 570
390 to 460
Tensile Strength: Yield (Proof), MPa 310
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
990
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 49
69
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
16

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 18
49
Embodied Water, L/kg 45
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 260
100 to 160
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
13 to 15
Strength to Weight: Bending, points 20
14 to 16
Thermal Diffusivity, mm2/s 13
19
Thermal Shock Resistance, points 17
14 to 16

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.5
Carbon (C), % 0 to 0.25
0
Copper (Cu), % 0
90.2 to 94
Iron (Fe), % 96.9 to 100
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.045
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5