MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. S42035 Stainless Steel

Both ASTM grade LCC steel and S42035 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
18
Fatigue Strength, MPa 230
260
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 570
630
Tensile Strength: Yield (Proof), MPa 310
430

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
810
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 18
34
Embodied Water, L/kg 45
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 260
460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 13
7.2
Thermal Shock Resistance, points 17
22

Alloy Composition

Carbon (C), % 0 to 0.25
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Iron (Fe), % 96.9 to 100
78.1 to 85
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0
1.0 to 2.5
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030
Titanium (Ti), % 0
0.3 to 0.5
Residuals, % 0 to 1.0
0