MakeItFrom.com
Menu (ESC)

AWS BAg-1 vs. C94900 Bronze

AWS BAg-1 belongs to the otherwise unclassified metals classification, while C94900 bronze belongs to the copper alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 17 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS BAg-1 and the bottom bar is C94900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
41
Tensile Strength: Ultimate (UTS), MPa 170
300

Thermal Properties

Latent Heat of Fusion, J/g 110
190
Melting Completion (Liquidus), °C 620
980
Melting Onset (Solidus), °C 610
910
Specific Heat Capacity, J/kg-K 280
370
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Density, g/cm3 9.2
8.8
Embodied Carbon, kg CO2/kg material 44
3.4
Embodied Energy, MJ/kg 690
55

Common Calculations

Stiffness to Weight: Axial, points 4.6
6.9
Stiffness to Weight: Bending, points 15
18
Strength to Weight: Axial, points 5.1
9.4
Strength to Weight: Bending, points 7.4
11
Thermal Shock Resistance, points 7.0
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Cadmium (Cd), % 23 to 25
0
Copper (Cu), % 14 to 16
79 to 81
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Silver (Ag), % 44 to 46
0
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 14 to 18
4.0 to 6.0
Residuals, % 0
0 to 0.8