MakeItFrom.com
Menu (ESC)

AWS BAg-10 vs. CC499K Bronze

AWS BAg-10 belongs to the otherwise unclassified metals classification, while CC499K bronze belongs to the copper alloys. They have a modest 25% of their average alloy composition in common, which, by itself, doesn't mean much. There are 15 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.

For each property being compared, the top bar is AWS BAg-10 and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 82
110
Poisson's Ratio 0.35
0.34
Shear Modulus, GPa 30
41
Tensile Strength: Ultimate (UTS), MPa 140
260

Thermal Properties

Latent Heat of Fusion, J/g 130
190
Melting Completion (Liquidus), °C 740
1000
Melting Onset (Solidus), °C 690
920
Specific Heat Capacity, J/kg-K 280
370
Thermal Expansion, µm/m-K 20
18

Otherwise Unclassified Properties

Density, g/cm3 9.8
8.8

Common Calculations

Stiffness to Weight: Axial, points 4.6
6.9
Stiffness to Weight: Bending, points 15
18
Strength to Weight: Axial, points 4.0
8.1
Strength to Weight: Bending, points 6.1
10
Thermal Shock Resistance, points 6.2
9.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Chromium (Cr), % 0
0 to 0.020
Copper (Cu), % 19 to 21
84 to 88
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0
0 to 3.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.010
Silver (Ag), % 69 to 71
0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 8.0 to 12
4.0 to 6.0
Residuals, % 0 to 0.15
0