MakeItFrom.com
Menu (ESC)

AWS BAg-18 vs. C93500 Bronze

AWS BAg-18 belongs to the otherwise unclassified metals classification, while C93500 bronze belongs to the copper alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 17 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS BAg-18 and the bottom bar is C93500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 82
100
Poisson's Ratio 0.36
0.35
Shear Modulus, GPa 30
38
Tensile Strength: Ultimate (UTS), MPa 170
220

Thermal Properties

Latent Heat of Fusion, J/g 130
180
Melting Completion (Liquidus), °C 720
1000
Melting Onset (Solidus), °C 600
850
Specific Heat Capacity, J/kg-K 280
360
Thermal Expansion, µm/m-K 19
18

Otherwise Unclassified Properties

Density, g/cm3 9.7
9.0
Embodied Carbon, kg CO2/kg material 59
3.0
Embodied Energy, MJ/kg 930
49

Common Calculations

Stiffness to Weight: Axial, points 4.7
6.3
Stiffness to Weight: Bending, points 15
17
Strength to Weight: Axial, points 4.9
6.9
Strength to Weight: Bending, points 7.0
9.1
Thermal Shock Resistance, points 7.7
8.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.3
Copper (Cu), % 28.4 to 31.5
83 to 86
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
8.0 to 10
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Silver (Ag), % 59 to 61
0
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 9.5 to 10.5
4.3 to 6.0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 1.0