MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. EN 1.4659 Stainless Steel

AWS BMg-1 belongs to the magnesium alloys classification, while EN 1.4659 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
210
Elongation at Break, % 3.8
49
Fatigue Strength, MPa 72
460
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
81
Shear Strength, MPa 100
640
Tensile Strength: Ultimate (UTS), MPa 180
900
Tensile Strength: Yield (Proof), MPa 110
480

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 440
1430
Specific Heat Capacity, J/kg-K 980
460
Thermal Conductivity, W/m-K 76
12
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 55
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 1.8
8.2
Embodied Carbon, kg CO2/kg material 22
6.5
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 980
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
370
Resilience: Unit (Modulus of Resilience), kJ/m3 120
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 66
24
Strength to Weight: Axial, points 27
31
Strength to Weight: Bending, points 39
25
Thermal Diffusivity, mm2/s 43
3.2
Thermal Shock Resistance, points 10
19

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Beryllium (Be), % 0.00020 to 0.00080
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0 to 0.050
1.0 to 2.0
Iron (Fe), % 0 to 0.0050
35.7 to 45.7
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
2.0 to 4.0
Molybdenum (Mo), % 0
5.5 to 6.5
Nickel (Ni), % 0 to 0.0050
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 1.7 to 2.3
0
Residuals, % 0 to 0.3
0