MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. EN 1.4938 Stainless Steel

AWS BMg-1 belongs to the magnesium alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
200
Elongation at Break, % 3.8
16 to 17
Fatigue Strength, MPa 72
390 to 520
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 100
540 to 630
Tensile Strength: Ultimate (UTS), MPa 180
870 to 1030
Tensile Strength: Yield (Proof), MPa 110
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Maximum Temperature: Mechanical, °C 130
750
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 440
1420
Specific Heat Capacity, J/kg-K 980
470
Thermal Conductivity, W/m-K 76
30
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 55
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 1.8
7.8
Embodied Carbon, kg CO2/kg material 22
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 980
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1050 to 1920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 66
25
Strength to Weight: Axial, points 27
31 to 37
Strength to Weight: Bending, points 39
26 to 29
Thermal Diffusivity, mm2/s 43
8.1
Thermal Shock Resistance, points 10
30 to 35

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Beryllium (Be), % 0.00020 to 0.00080
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
80.5 to 84.8
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.0050
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 1.7 to 2.3
0
Residuals, % 0 to 0.3
0