MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. CC492K Bronze

AWS BMg-1 belongs to the magnesium alloys classification, while CC492K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is CC492K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
110
Elongation at Break, % 3.8
14
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
40
Tensile Strength: Ultimate (UTS), MPa 180
280
Tensile Strength: Yield (Proof), MPa 110
150

Thermal Properties

Latent Heat of Fusion, J/g 350
190
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
1000
Melting Onset (Solidus), °C 440
900
Specific Heat Capacity, J/kg-K 980
370
Thermal Conductivity, W/m-K 76
73
Thermal Expansion, µm/m-K 26
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
13
Electrical Conductivity: Equal Weight (Specific), % IACS 55
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
33
Density, g/cm3 1.8
8.8
Embodied Carbon, kg CO2/kg material 22
3.4
Embodied Energy, MJ/kg 160
54
Embodied Water, L/kg 980
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
33
Resilience: Unit (Modulus of Resilience), kJ/m3 120
100
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 66
18
Strength to Weight: Axial, points 27
8.7
Strength to Weight: Bending, points 39
11
Thermal Diffusivity, mm2/s 43
23
Thermal Shock Resistance, points 10
10

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Beryllium (Be), % 0.00020 to 0.00080
0
Copper (Cu), % 0 to 0.050
83 to 89
Iron (Fe), % 0 to 0.0050
0 to 0.2
Lead (Pb), % 0
2.5 to 3.5
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
0
Nickel (Ni), % 0 to 0.0050
0 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0 to 0.050
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 1.7 to 2.3
1.5 to 3.0
Residuals, % 0 to 0.3
0