MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. SAE-AISI 1015 Steel

AWS BMg-1 belongs to the magnesium alloys classification, while SAE-AISI 1015 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is SAE-AISI 1015 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
190
Elongation at Break, % 3.8
20 to 32
Fatigue Strength, MPa 72
170 to 250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Shear Strength, MPa 100
260 to 270
Tensile Strength: Ultimate (UTS), MPa 180
390 to 440
Tensile Strength: Yield (Proof), MPa 110
210 to 370

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 440
1420
Specific Heat Capacity, J/kg-K 980
470
Thermal Conductivity, W/m-K 76
52
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 55
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.8
Density, g/cm3 1.8
7.9
Embodied Carbon, kg CO2/kg material 22
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 980
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
120 to 360
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 66
24
Strength to Weight: Axial, points 27
14 to 15
Strength to Weight: Bending, points 39
15 to 16
Thermal Diffusivity, mm2/s 43
14
Thermal Shock Resistance, points 10
12 to 14

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Beryllium (Be), % 0.00020 to 0.00080
0
Carbon (C), % 0
0.13 to 0.18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
99.13 to 99.57
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
0.3 to 0.6
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 1.7 to 2.3
0
Residuals, % 0 to 0.3
0