MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. SAE-AISI 1211 Steel

AWS BMg-1 belongs to the magnesium alloys classification, while SAE-AISI 1211 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is SAE-AISI 1211 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
190
Elongation at Break, % 3.8
11 to 29
Fatigue Strength, MPa 72
200 to 280
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Shear Strength, MPa 100
280 to 350
Tensile Strength: Ultimate (UTS), MPa 180
430 to 580
Tensile Strength: Yield (Proof), MPa 110
260 to 460

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 440
1420
Specific Heat Capacity, J/kg-K 980
470
Thermal Conductivity, W/m-K 76
52
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 55
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.8
Density, g/cm3 1.8
7.9
Embodied Carbon, kg CO2/kg material 22
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 980
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
61 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
180 to 550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 66
24
Strength to Weight: Axial, points 27
15 to 21
Strength to Weight: Bending, points 39
16 to 20
Thermal Diffusivity, mm2/s 43
14
Thermal Shock Resistance, points 10
14 to 18

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Beryllium (Be), % 0.00020 to 0.00080
0
Carbon (C), % 0
0 to 0.13
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
98.7 to 99.23
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
0.6 to 0.9
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0.070 to 0.12
Silicon (Si), % 0 to 0.050
0
Sulfur (S), % 0
0.1 to 0.15
Zinc (Zn), % 1.7 to 2.3
0
Residuals, % 0 to 0.3
0