MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. SAE-AISI 4340M Steel

AWS BMg-1 belongs to the magnesium alloys classification, while SAE-AISI 4340M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is SAE-AISI 4340M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
190
Elongation at Break, % 3.8
6.0
Fatigue Strength, MPa 72
690
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
72
Shear Strength, MPa 100
1360
Tensile Strength: Ultimate (UTS), MPa 180
2340
Tensile Strength: Yield (Proof), MPa 110
1240

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Maximum Temperature: Mechanical, °C 130
430
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 440
1400
Specific Heat Capacity, J/kg-K 980
480
Thermal Conductivity, W/m-K 76
38
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 55
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.9
Density, g/cm3 1.8
7.8
Embodied Carbon, kg CO2/kg material 22
1.9
Embodied Energy, MJ/kg 160
26
Embodied Water, L/kg 980
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
4120
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 66
25
Strength to Weight: Axial, points 27
84
Strength to Weight: Bending, points 39
51
Thermal Diffusivity, mm2/s 43
10
Thermal Shock Resistance, points 10
70

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Beryllium (Be), % 0.00020 to 0.00080
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 1.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
93.3 to 94.8
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
0.65 to 0.9
Molybdenum (Mo), % 0
0.35 to 0.45
Nickel (Ni), % 0 to 0.0050
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.012
Silicon (Si), % 0 to 0.050
1.5 to 1.8
Sulfur (S), % 0
0 to 0.012
Vanadium (V), % 0
0.050 to 0.1
Zinc (Zn), % 1.7 to 2.3
0
Residuals, % 0 to 0.3
0