MakeItFrom.com
Menu (ESC)

AWS BMg-1 vs. C67000 Bronze

AWS BMg-1 belongs to the magnesium alloys classification, while C67000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BMg-1 and the bottom bar is C67000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
110
Elongation at Break, % 3.8
5.6 to 11
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 18
42
Shear Strength, MPa 100
390 to 510
Tensile Strength: Ultimate (UTS), MPa 180
660 to 880
Tensile Strength: Yield (Proof), MPa 110
350 to 540

Thermal Properties

Latent Heat of Fusion, J/g 350
190
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 600
900
Melting Onset (Solidus), °C 440
850
Specific Heat Capacity, J/kg-K 980
410
Thermal Conductivity, W/m-K 76
99
Thermal Expansion, µm/m-K 26
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
22
Electrical Conductivity: Equal Weight (Specific), % IACS 55
25

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 1.8
7.9
Embodied Carbon, kg CO2/kg material 22
2.9
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 980
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.9
43 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 120
560 to 1290
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 66
20
Strength to Weight: Axial, points 27
23 to 31
Strength to Weight: Bending, points 39
21 to 26
Thermal Diffusivity, mm2/s 43
30
Thermal Shock Resistance, points 10
21 to 29

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
3.0 to 6.0
Beryllium (Be), % 0.00020 to 0.00080
0
Copper (Cu), % 0 to 0.050
63 to 68
Iron (Fe), % 0 to 0.0050
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 86.1 to 89.8
0
Manganese (Mn), % 0.15 to 1.5
2.5 to 5.0
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 1.7 to 2.3
21.8 to 32.5
Residuals, % 0
0 to 0.5